
Slope-Intercept Form

It started 20 ft high. $M = \frac{+10 \text{ At}}{+10 \text{ days}} = + 1 \text{ At/day}$

The height is increasing 1-A/day

The function in the Solve It is a linear function. A family of functions is a group of functions with common characteristics. A parent function is the simplest function with these characteristics. The **linear parent function** is y = x or f(x) = x. The graphs of three linear functions are shown at the right.

A linear equation is an equation that models a linear function. In a linear equation, the variables cannot be raised to a power other than 1. So y = 2x is a linear

function, but $y = x^2$ and $y = 2^x$ are not. The graph of a linear equation contains all the ordered pairs that are solutions of the equations.

Graphs of linear functions may cross the y-axis at any point. A y-intercept of a graph is the y-coordinate of a point where the graph crosses the y-axis. You can use the slope and y-intercept of a line to write and graph an equation of the line.

KEY CONCEPT: SLOPE-INTERCEPT FORM OF A LINEAR EQUATION

The **slope-intercept form** of a linear equation of a nonvertical line is:

b) y = -x + 4

y must
$$y = mx + b$$
isolated $y = mx + b$
slope

PROBLEM 1: IDENTIFYING SLOPE AND Y-INTERCEPT

Find the slope and y-intercept of each equation.

a)
$$y = 5x - 2$$

 $m = 5$
 $y - int = -2$
 $(0, -2)$
e) $y = \frac{1}{2}x + \frac{2}{3}$

$$y-int = -2
(0,4)$$

$$y=\frac{1}{2}x+\frac{2}{3}$$

$$y-int = 4
(0,4)$$

$$y = -3x+2$$

$$y-int = 3$$

$$y-int = 2
(0,2)$$

c)
$$y = 7x$$

 $M = 7$
 $y - inf = 0$
(0)0)
g) $3x + 4y = 12$
 $-3x$
 $-3x$
 $-3x$
 $-3x + 12$
 $-3x + 13$

d)
$$y = 4$$
 $m = 0$
 $y = int = 4$
 $(0,4)$

h) $x = 2$
 $m = 0$
 $y = int = 4$
 $(0,4)$
 $y = 4$
 $y = 0$
 y

y-int= +3 (0,3)

PROBLEM 2: WRITING AN EQUATION IN SLOPE-INTERCEPT FORM

Write an equation in slope-intercept form of the line with the given slope \mathbf{m} and y-intercept \mathbf{b} .

a)
$$m = -\frac{4}{5}$$
, $b = 7$

b)
$$m = 4, b = -2$$

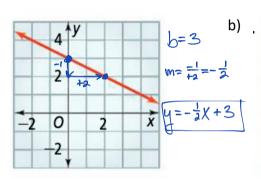
c)
$$m = -2, b = 5$$

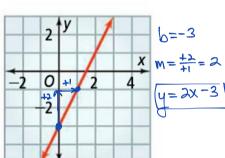
$$y = -2x + 5$$

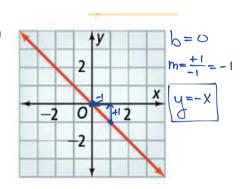
d)
$$m = \frac{1}{2}$$
, $b = -\frac{1}{2}$

$$V = \frac{1}{2} \times - \frac{1}{2}$$

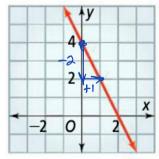
e)
$$m = \frac{7}{10}$$
, $b = 3$

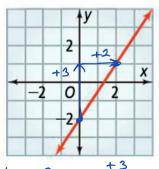

$$y = \frac{7}{10}x + 3$$


f)
$$m = -2$$
, $b = \frac{8}{5}$

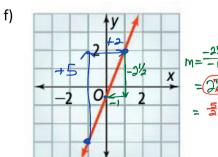

PROBLEM 3: WRITING AN EQUATION FROM A GRAPH

Write an equation in slope-intercept form of each line.


a)



d)


$$b = 4$$
, $m = \frac{-2}{+1} = -2$

e)

$$b=-2$$
, $m=\frac{+3}{+2}=\frac{3}{2}$

$$y = \frac{3}{2}x - 2$$

 $b=-\frac{1}{2}, m=\frac{+5}{+2}=\frac{5}{6}$

$$\int_{0}^{\infty} y = \frac{5}{2}x - \frac{1}{2}$$

$$y = mx + b$$

$$M = \frac{X_3 - X_1}{X_3 - X_1}$$

PROBLEM 4: WRITING AN EQUATION FROM TWO POINTS

Write an equation in slope-intercept form of the line that passes through the given points.

a)
$$(2,1)$$
 and $(5,-8)$

1.
$$M = \frac{-8-1}{5-2} = \frac{-9}{3} = \frac{-3}{3}$$

Find $y = -3x + b$
Substitute $1 = -3(2) + b$
Substitute $1 = -3(2) + b$

2. Find
$$1 = -3(2) + b$$

Substitute $1 = -6 + b$

y and $1 = -6 + b$

solve $7 = b$

$$y = -3x + 7$$
d) $(3, -2)$ and $(1, -3)$

$$M = \frac{-3 - (-2)}{1 - 3} = \frac{-1}{-2} = \frac{1}{2}$$

$$y = \frac{1}{2}X + b$$

$$-2 = \frac{1}{3}(3) + b$$

$$-2 = 1.5 + b$$

$$-1.5 = -1.5$$

b)
$$(0,3)$$
 and $(2,5)$

$$M = \frac{5-3}{2-0} = \frac{2}{2} = 1$$

$$Y = X + b$$

$$5 = 2 + b$$

$$-2 - 2$$

$$3 = b$$

e)
$$(3, -3)$$
 and $(1,2)$

$$x_1 \quad y_1 \quad x_2 \quad y_3$$

$$M = \frac{2 - (-3)}{1 - 3} = \frac{5}{-2} = -\frac{5}{2}$$

$$y = -\frac{5}{2}x + b$$

$$2 = -\frac{5}{2}(1) + b$$

$$2 = -\frac{5}{2} + b$$

$$+\frac{5}{2} + \frac{5}{2}$$

$$y = -\frac{5}{2}x + \frac{9}{2}$$

$$0 = y = -\frac{5}{2}x + \frac{1}{2}$$

$$y = -\frac{5}{2}x + \frac{9}{2}$$

c)
$$(-2.4)$$
 and $(3, -1)$

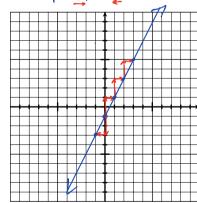
$$m = \frac{-1 - 4}{3 - (-2)} = \frac{-5}{5} = \boxed{1}$$

$$y = -X + b$$

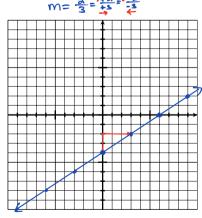
$$-1 = -3 + b$$

$$+3 + 3$$

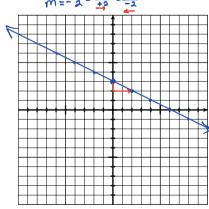
$$2 = b$$

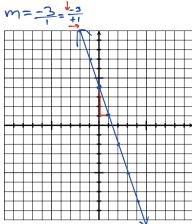

f)
$$(-2, -4)$$
 and $(0,5)$
 x_1
 y_1
 x_2
 y_3
 y_4
 y_5
 y_6
 y_7
 y_8
 y_8
 y_8
 y_8
 y_8
 y_9
 $y_$

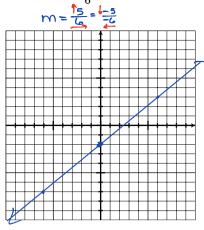
PROBLEM 5: GRAPHING A LINEAR EQUATION

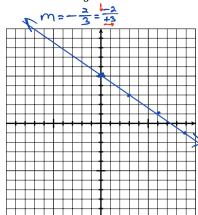

Graph each equation.

a)
$$y = 2x - 1$$
 $b = -1$

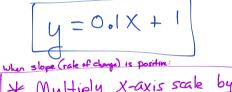

$$m = \frac{2}{1} = \frac{1+2}{1+1} = \frac{1-2}{1-1}$$

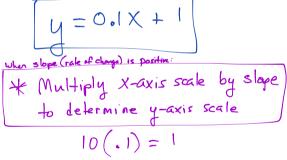

b)
$$y = \frac{2}{3}x - 4$$
 b=-4
$$m = \frac{2}{3} = \frac{1+2}{2} = \frac{1-2}{2}$$


c)
$$y = -\frac{1}{2}x + 3$$
 $b=3$
 $m = -\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

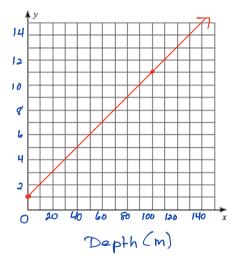

d)
$$y = -3x + 4$$
 $m = -3 = \frac{1}{41}$

e)
$$y = \frac{5}{6}x - 2$$

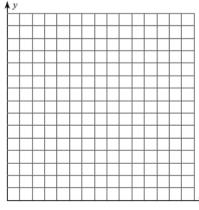

f)
$$y = -\frac{2}{3}x + 5$$
 b= 5



PROBLEM 6: MODELING A FUNCTION


Initial

a) Water pressure can be measured in atmospheres (atm). At the surface of the water, the pressure is 1 atm. As the depth increases, the pressure increases by 0.1 atm/m. Write an equation that models the pressure y at a depth of x meters. Graph the function.



$$m = \frac{0.1}{100} \times \frac{100}{100} = \frac{10}{100}$$

b) A plumber charges a \$65 fee for a repair plus \$35 per hour. Write an equation to model the total cost y of a repair that takes x hours. Graph the function that models the total cost.

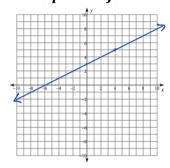
5-3 Practice Worksheet

Identify the slope and y-intercept for each equation.

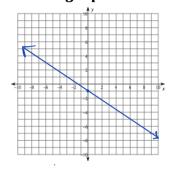
1.
$$y = \frac{2}{3}x - 4$$

2.
$$y - 3x = \frac{1}{2}$$

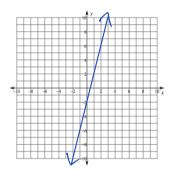
3.
$$2y - 6x = 10$$


Write an equation for the line with the given slope and y-intercept.

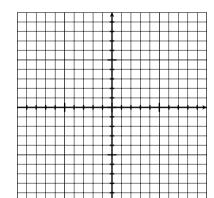
4.
$$m = \frac{2}{5}, b = 5$$


5.
$$m = 0.3, b = -1.5$$

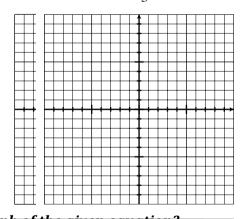
Write an equation for the lines shown on each graph.


6.

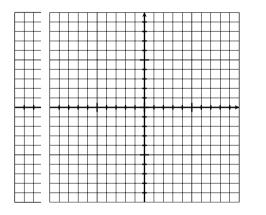
7.

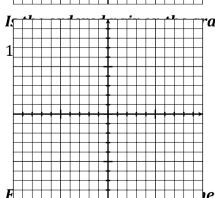


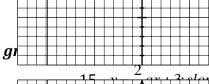
8.

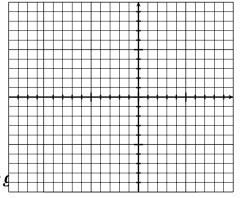


Graph each equation.

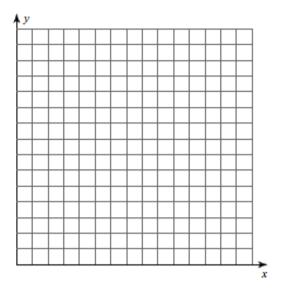

9.
$$y = 2x - 3$$




10.
$$y = -\frac{2}{5}x + 4$$



11.
$$y-5=-\frac{1}{4}x$$



- 16. When the Bryants leave town for a vacation, they put their dog Tyco in a kennel. The kennel charges \$15 for an immediate flea bath and \$5 per day.
 - a.) Write and equation in slope-intercept form to represent the situation.
 - b.) Graph the equation.
 - c.) Explain why only Quadrant I is needed to graph this situation.

17. Which equation has the same y-intercept as y = 4x - 3?

a)
$$y - 3 = x$$

b)
$$y = 8x + 3$$

c)
$$3 - y = 4x$$

a)
$$y-3=x$$
 b) $y=8x+3$ c) $3-y=4x$ d) $y=-3+8x$

18. Which of the following is the equation of the line that has the same slope as $y = -\frac{3}{2}x + 2$ and the same yintercept as y = 3x - 2?

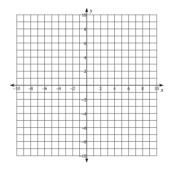
a)
$$y-2 = -\frac{3}{2}x$$

b)
$$-\frac{3}{2}x = y + 2$$

c)
$$y+2=-\frac{3}{2}$$

a)
$$y-2=-\frac{3}{2}x$$
 b) $-\frac{3}{2}x=y+2$ c) $y+2=-\frac{3}{2}$ d) $-\frac{3}{2}x=y+3$

19. A software company started with 2 employees. In 6 months, the company had 7 employees. The number of employees increased at a steady rate. Which equation models the relationship between the number of employees *n* and the number of months *m* since the company started?


a)
$$n = \frac{5}{6}m + 2$$

b)
$$m = 2n + \frac{5}{6}$$

c)
$$n = \frac{6}{5}m + 2$$

a)
$$n = \frac{5}{6}m + 2$$
 b) $m = 2n + \frac{5}{6}$ c) $n = \frac{6}{5}m + 2$ d) $m = \frac{5}{6}n + 2$

20. A line passes through the points (0,3) and (1,5). Graph this line and find an equation for the line in slope-intercept form.

